
— Draft submitted to TFP 2014 post-proceedings —

Reflect on Your Mistakes!

Lightweight Domain-Specific Error Messages

David Raymond Christiansen

IT University of Copenhagen
drc@itu.dk

Abstract. Embedded domain-specific languages allow the rapid proto-
typing and development of new languages. Host languages with rich type
systems can encode a wide variety of embedded language type systems,
leading to the same static safety guarantees that a stand-alone imple-
mentation would enjoy. However, the error messages generated by these
embedded type systems are notoriously difficult to understand, which
can limit the practical utility of safe embedded languages. This paper
presents a language feature, called error reflection, that allows EDSL
and library authors to customize the display of compiler errors based on
reflected representations of these errors. Additionally, error reflection is
applicable to other situations in which immediate surface syntax does
not correspond to underlying representations.

1 Introduction

Much of the discourse about domain-specific languages (DSLs) has traditionally
focused on allowing domain experts, rather than professional software develop-
ers, to describe non-trivial software in a notation that is close to their mental
models. Embedded domain-specific languages (EDSLs) were described by Hudak
in 1996 [11]. In an EDSL, an already-existing general-purpose language is used
to express the constructs of the domain-specific language, which may not require
as large of an investment of time as a stand-alone implementation due to re-use
of existing development tools. In recent years, another category of embedded
domain-specific languages has come to the fore: EDSLs intended for professional
software developers that mask some of the complexity of a particular area of
programming. Examples of this category include Chafi et al.’s work with het-
erogeneous parallelism [7], the Repa array language [12], and the Feldspar DSP
language [1].

Embedding DSLs in a host language with an expressive type system allows
domain-specific type systems to be encoded in the host type system. This has
a number of benefits: the DSL type system inherits properties from the host
language such as type soundness and decidability of type checking, the DSL
developers do not need to implement complicated features such as type infer-
ence, and existing development tools can support the embedded language’s type
system without further extension or customization. The Achilles’ heel of this

approach is the convoluted error messages that can result from non-trivial en-
codings: they may bear little resemblance to the embedded surface syntax and
they may be long and stereotypical. The utility of a type error that no user can
understand is questionable at best.

Idris [3] is a dependently typed functional programming language that is ex-
pressly built to be a good host for embedded languages. Examples of non-trivial
embedded languages include Brady’s algebraic effects language [4] and his ear-
lier language for resource-safe programming [5]. Full dependent types, where the
type system includes the full computational power of the total fragment of the
term language, have the potential to be a host for very expressive embedded
type systems. Additionally, embedded languages have the potential to hide the
complexity of full dependent types, allowing programmers to write code as if
they were working in a simpler language. If this goal is to be practical, then the
problem of error messages must be solved.

An embedded query language for relational databases might require that
projections from tuples select columns that actually exist in the schema. The
mechanism described in this paper can transform this generic error message:

Can’t solve goal

HasCol [("name", STRING), ("age", INT)] "naime" STRING

into this domain-specific error message:

The schema [("name", STRING), ("age", INT)] does not contain the

column "naime" with type STRING

Contributions

The primary contribution of this paper is a novel extension to the Idris language,
called error reflection, that expands the scope of the reflection mechanism used
for proof automation to encompass error reporting. Error reflection enables de-
velopers to rewrite the compile-time error messages that result from complex
APIs, particularly embedded domain-specific languages, so that the error mes-
sages can be consistent with the ideas and metaphors of the API or DSL. The
paper presents several examples of error messages that can be improved using
error reflection. Though the technique is implemented in Idris, there is reason to
believe that it would be applicable to languages without dependent types. Error
reflection is implemented in versions of Idris numbered 0.9.13 and higher.

2 Background

2.1 Reflection in Idris

Idris’s reflection mechanism is closely related to that of Agda [22]. The reflection
mechanism defines a datatype that represents expressions, along with a means
for quoting, or reflecting, expressions to this datatype and, conversely, a means

of reifying these representations to real expressions. This allows the language
itself to be used to automate the construction of proofs.

As described by Brady [3], the Idris compiler contains two programming
languages: a high-level user-friendly functional language and a low-level fully-
explicit core language that is easy for the machine to type check. A process called
elaboration explains the features of the high-level language, such as type classes,
implicit arguments, and where-blocks, in terms of the simple core language.

Idris’s reflection datatype faithfully represents the expressions of this core
language. The original use for reflection was the implementation of custom proof
tactics, represented as functions from reflected representations of a proof context
and goal to a tactic script that solves this goal. Reflection has not yet seen
major use as a means of compile-time code generation in the style of Template
Haskell [18].

2.2 Idris Quasiquotation

Reflected terms faithfully represent Idris’s highly explicit core theory, and are
therefore somewhat awkward to destructure and construct. An experimental ex-
tension to Idris supports the use of quasiquotations for manipulating reflected
terms. Quasiquotations, which syntactically consist of parenthesized Idris terms
preceded by a back-tick, represent the reflected version of the term in the quo-
tation. Antiquotations, which are subterms preceded by a tilde,1 cause the an-
tiquoted reflected term to be spliced in to the surrounding quotation. When
pattern matching, antiquotations instead contain other patterns, which can be
either pattern variables or patterns that match reflected terms.

A proof script tactic similar to Coq’s reflexivity, which attempts to solve
the current goal with the constructor of the equality type, can be implemented
using quasiquotation patterns as follows:

reflexivity : List (TTName, Binder TT) -> TT -> Tactic

reflexivity _ ‘(~x = ~y) = Refine "refl"

reflexivity _ _ = Search 0

The tactic checks whether the goal is an equality type, and if so, applies the
constructor. In other cases, it performs a zero-depth proof search, i.e., nothing.

This notion of quasiquotation is closer to those found in the Lisp family [2]
and Scala [17] rather than to those found in Camlp4 [16] and Haskell [13], because
Idris quasiquotations are used primarily for manipulating Idris code rather than
for embedding custom notations. Idris quasiquotations will be described in detail
in a forthcoming publication. Quasiquotations are not yet available in a released
version of Idris, but they will be in the release following version 0.9.13.1.

2.3 Techniques for Embedding Languages

Shallow embeddings of DSLs directly use the features of the host language where
they coincide with the embedded language. For example, addition in the embed-

1 The specific syntax is inspired by the Clojure dialect of Lisp [10].

ded language might directly correspond to addition in the host language, and
the variable binding mechanisms of the host language can implement binders in
the embedded language (a technique known as higher-order abstract syntax, or
HOAS [15]). Shallow embeddings can often provide very convenient interfaces,
but they have important drawbacks: there is no direct representation of the lan-
guage’s syntax for later processing, and typical representations of HOAS lead to
datatypes that are not strictly positive, rendering them unfit for use in depen-
dently typed languages.

A deep embedding uses an ordinary datatype to represent the abstract syntax
of the embedded language. Indexed families, as found in post-GADT Haskell and
OCaml as well as in dependently typed languages, allow this approach to encode
expressive typing rules. Additionally, Idris has feature called DSL notation [5]
that allows the direct reification of Idris’s binding syntax to de Bruijn-indexed
datatype families with any inferrable collection of indices, which removes much
of the syntactic advantage of shallow embeddings. However, even though indexed
families and DSL notation provide an expressive framework for describing em-
bedded DSLs in a safe and convenient manner, not every feature of an embedded
language is necessarily convenient to represent in this notation.

Many embedded languages do not fit the general framework of a functional
programming language’s type system. Quite often, an embedded language will
have “side conditions” — invariants on code that should be statically checked.
Examples might include ensuring that a variable name is found in some context
or that all elements of one list are contained in another. There are various means
of encoding these constraints, such as Haskell’s type classes and Scala’s implicit
arguments. In Idris, a commonly-used technique is to define a type whose inhabi-
tants witness the side condition in question, and then arrange for the compiler to
automatically construct these witnesses when possible. In the interest of simplic-
ity, this paper does not use the more advanced methods of language embedding.
However, improving error messages that result from checking side conditions is
an important success criterion for the language feature presented in this paper.

3 Error Reflection

3.1 Motivating Example

As a very simple motivating example, consider a tiny fragment of a database in-
terface library that contains schemas, tuples, and relations, along with Cartesian
products of relations and projection of individual elements from tuples. Follow-
ing Oury and Swierstra [14], we define a simple universe of datatypes that will
be supported in the database. For the sake of simplicity, the embedded language
will support only integers and strings:

data Ty = INT | STRING

interpTy : Ty -> Type

interpTy INT = Int

interpTy STRING = String

Schemas are simply lists of pairs of column names and codes from the universe:

Schema : Type

Schema = List (String, Ty)

Tuples are represented by the family Row, which is indexed by schemas:

data Row : Schema -> Type where

Nil : Row []

(::) : interpTy t -> Row s -> Row ((c,t) :: s)

In Idris, naming the constructors Nil and (::) allows list literal syntax to be
used to construct a Row. The following listing puts these pieces together, showing
a concrete schema and row:

r : Row [("name", STRING), ("age", INT)]

r = ["Jane", 43]

Projections from a tuple are slightly more complicated: the type of the result
depends on the schema, and the system should disallow projections of columns
that do not exist in the schema. Preferably, this check will occur statically. A
convenient way to achieve this is to define a type of witnesses that a particular
attribute is present in a schema, and then arrange for Idris to construct these
witnesses on demand. The type HasCol s c t represents that schema s contains
a column named c with type t, using the standard technique.

data HasCol : Schema -> String -> Ty -> Type where

Here : HasCol ((c, t) :: s) c t

There : HasCol s c t -> HasCol ((c’,t’)::s) c t

Projection can now be defined by recursion over the structure of these wit-
nesses:

project : (c : String) -> (t : Ty) -> (r : Row s) ->

(ok : HasCol s c t) ->

interpTy t

project c t [] ok = FalseElim (emptyNoCols ok)

project c t (x :: xs) Here = x

project c t (x :: xs) (There p) = project c t xs p

In practice, however, we cannot expect users of our embedded query language
to construct a HasCol every time they want to project an element from a tuple.
Thus, we redefine ok to be an implicit argument that should be inferred by the
compiler. The auto keyword causes Idris to construct the HasCol witness using
its built-in proof search.

project : (c : String) -> (t : Ty) -> (r : Row s) ->

{auto ok : HasCol s c t} ->

interpTy t

project c t [] {ok = ok} = FalseElim (emptyNoCols ok)

project c t (x :: xs) {ok = Here} = x

project c t (x :: xs) {ok = There p} = project c t xs {ok=p}

A relation is a collection of tuples with the same schema. Here, a relation con-
taining n tuples with schema s is represented by a Vect n (Row s). Like SQL
and unlike the relational algebra, this encoding allows for duplicate tuples. The
Cartesian product, written here with the (*) operator, is the concatenation of
each row from one relation with each row from another. Just like projection, the
Cartesian product has a side condition: it is only defined for tuples whose collec-
tion of attribute names are disjoint. As before, we represent this side condition
using an automatically-solved implicit proof of disjointness.

(*) : Vect n (Row s1) -> Vect m (Row s2) ->

{auto prf : Disjoint s1 s2} ->

Vect (n * m) (Row (s1 ++ s2))

(*) [] ys = []

(*) (r::rs) ys {prf = prf} = map (r++) ys ++ ((*) rs ys {prf=prf})

Ideally, users of an embedded database language would be able to work en-
tirely within the abstractions of the database language, rather than needing to
worry about the details of proof automation and implicit arguments. However,
when they make mistakes, the error messages are expressed in terms of the un-
derlying implementation of the static semantics. The purpose of this work is to
improve on this situation.

3.2 Error Messages

The relation humans describes people and their ages, while housing lists the size
of two apartments:

humans : Vect 2 (Row [("name", STRING), ("age", INT)])

humans = [["Alice", 37], ["Bob", 23]]

housing : Vect 2 (Row [("floorspace", INT)])

housing = [[48], [72]]

The first column of the first row in humans can be extracted using project,
but if a user misspells a column name, then the resulting error message can be
difficult to decode:

> project "name" STRING (head humans)

"Alice" : String

> project "naime" STRING (head humans)

Can’t solve goal

HasCol [("name", STRING), ("age", INT)] "naime" STRING

Likewise, the Cartesian product of humans and housing contains the expected
four tuples. However, trying to take the product of humans and itself results
in an error that reflects details of the DSL implementation rather than domain
concepts:

> humans * housing

[["Alice", 37, 48],

["Alice", 37, 72],

["Bob", 23, 48],

["Bob", 23, 72]] : Vect 4

(Row [("name", STRING),

("age", INT),

("floorspace", INT)])

> humans * humans

Can’t solve goal

Disjoint [("name", STRING), ("age", INT)]

[("name", STRING), ("age", INT)]

Careful naming of the required proof objects can sometimes lead to these er-
rors being somewhat understandable, as above. However, good error messages
should do more than simply provide a vague hint about why a problem arose.
They should explain the problem, and do so in an accessible and straightforward
manner.

3.3 Reflecting Errors

In recent versions of Idris, the compiler is capable of reflecting its error messages.
The standard library contains a datatype corresponding to the compiler’s own
internal representation of errors, and Idris functions can insert themselves into
the error reporting mechanism to rewrite errors before they are shown to users.
In some sense, these error handlers resemble exception handlers, except they can
only raise a new exception, rather than recovering from the error and continuing
the program.

An error handler is a partial function from a representation Err of error
messages to a rewritten error report. Accordingly, we might assign them the
type Err -> Maybe String. However, error messages have more structure than
a String can express. Often, they will include Idris terms, or have a hierarchical
structure. Error reports that result from reflection should be able to use the
facilities of the compiler that already exist for rendering this structure. Thus,
Idris defines a type ErrorReportPart that represents the various sorts of content
that can appear in an error report.

data ErrorReportPart = TextPart String

| NamePart TTName

| TermPart TT

| SubReport (List ErrorReportPart)

The constructor TextPart represents a string containing error explanations,
NamePart contains a reflected Idris name to be highlighted, TermPart contains
a reflected Idris term to be pretty-printed, and SubReport contains a report to
be displayed as sub-details of a report.

The representation of errors Err is simply a subset of the constructors of the
compiler’s internal datatype that represents errors, including the most important
errors, such as conversion errors, unification errors, and proof search failures. It
is a subset because error reflection should not rewrite errors that have already
been rewritten, and because some types of errors exist primarily to keep track
of things like source location, which rewritten errors should not lie about.

Error handlers map reflected errors to lists of these error report parts. Be-
cause not every handler will handle every error, error handlers should have the
type Err -> Maybe (List ErrorReportPart). To avoid the accidental applica-
tion of an error handler, the compiler pragma %error_handler is used to mark
functions with this type as error handlers.

The function dbErr in Figure 1 maps proof search errors in the above code to
domain-specific error messages. It relies on an auxiliary function getHasColFields,
which simply extracts the three parameters of the reflected representation of a
HasCol proof.

As we saw in Section 3.1, the following definition quite obviously fails to
satisfy the condition that the arguments of the Cartesian product of relations
should be disjoint:

test3 : Vect 4 (Row [("name", STRING), ("age", INT),

("name", STRING), ("age", INT)])

test3 = humans * humans

Now, however, the resulting error message refers specifically to the notion of
disjointness:

When elaborating right hand side of test3:

The schemas [("name", STRING), ("age", INT)] and

[("name", STRING), ("age", INT)] are not disjoint.

Additionally, misspelling a column name when performing a projection provides
a clear error. The definition:

floorspace : Int

floorspace = project "flodorspace" INT (index 2 (humans * housing))

yields the error

When elaborating right hand side of floorspace:

The schema [("name", STRING), ("age", INT)] ++ [("floorspace", INT)]

does not contain the column "flodorspace" with type INT

which quite straightforwardly explains the problem.

4 Case Studies

While error reflection was a useful technique for improving the usability of our
fragment of a domain-specific language, we should hope that the applicability
is somewhat broader. This section exhibits two specific applications for error
reflection in already-existing Idris code.

%error_handler

total

dbErr : Err -> Maybe (List ErrorReportPart)

dbErr (CantSolveGoal ‘(Disjoint ~s1 ~s2) _) =

Just [TextPart "The schemas", TermPart s1

, TextPart "and", TermPart s2

, TextPart "are not disjoint."]

dbErr (CantSolveGoal ‘(HasCol ~s ~c ~(P Bound _ _)) _) =

Just [TextPart "The schema", TermPart s

, TextPart "does not contain the column"

, TermPart c

]

dbErr (CantSolveGoal ‘(HasCol ~s ~c ~t) _) =

Just [TextPart "The schema", TermPart s

, TextPart "does not contain the column"

, TermPart c, TextPart "with type"

, TermPart t

]

dbErr _ = Nothing

Fig. 1. An error handler for the embedded database language. Quasiquotations are
used to destructure the terms inside of reflected errors.

4.1 Finite Set Literals

Error reflection is useful for more than just embedded DSLs. The Idris standard
library contains a number of potential sources of confusing error messages. Error
reflection can be used to bring these closer to what is expected.

A typical example of dependent types are the finite sets. Given a natural
number n, the type Fin n has exactly n elements. In other words, Fin 0 is
uninhabited, Fin 1 has precisely one element, Fin 2 has precisely two elements,
and so forth. The Fin family is often used for bounds-checked indexing into
data structures. Similarly to Haskell, when Idris encounters an integer literal
(say, 42), it is desugared to fromInteger 42. Unlike Haskell, type-driven ad hoc
overloading is used to disambiguate fromInteger. The Idris prelude contains the
following definition:

fromInteger : (x : Integer) ->

{default ItIsJust

prf : (IsJust (integerToFin x n))} -> Fin n

fromInteger {n} x {prf} with (integerToFin x n)

fromInteger {n} x {prf = ItIsJust} | Just y = y

Here, IsJust : Maybe a -> Type is a family of proofs that their arguments are
built with the Just constructor and the default ItIsJust modification to the
implicit argument causes Idris to use the constructor of these proofs to solve it.
The function integerToFin simply returns the corresponding Fin if possible, or

Nothing otherwise. This combination, then, statically ensures that Fin literals
are within their bounds.

Unfortunately, the error message that results from this arrangement is some-
what opaque. The simple definition:

f : Fin 2

f = 3

results in a quite involved error, in which otherwise-hidden details of the imple-
mentation take center stage:

When elaborating right hand side of f:

Can’t unify

IsJust (Just x)

with

IsJust (integerToFin 3 2)

Specifically:

Can’t unify

Just x

with

Nothing

It is straightforward to define an error handler that will rewrite this error to
something understandable. The error handler is demonstrated in Figure 2.

%error_handler

finTooBig : Err -> Maybe (List ErrorReportPart)

finTooBig (CantUnify x tm ‘(IsJust (integerToFin ~n ~m)) err xs y)

= Just [TextPart "When using" , TermPart n

, TextPart "as a literal for a"

, TermPart ‘(Fin ~m)
, SubReport [TextPart "Could not show that"

, TermPart n

, TextPart "is less than"

, TermPart m

]

]

finTooBig _ = Nothing

Fig. 2. An error handler for finite set literals

In the presence of this error handler, the above definition of f results in a
much more explanatory error message:

When elaborating right hand side of f:

When using 3 as a literal for a Fin 2

Could not show that 3 is less than 2

4.2 Algebraic Effects

Idris includes a library for handling side effects compositionally, without using
monad transformers. An earlier version of this library is described in Brady’s
paper from ICFP 2013 [4]. Briefly, { [E, F r, G] } Eff m a is the type of an
effectful computation that uses effects E, F, and G in monad m, yielding a value
in a. Additionally, the effect F has some resource that has type r.

When one operation in Eff calls another, the library searches for a proof
that the called operation’s effects are a subset of the calling operation’s effects.
This ensures that all effects that might be performed are visible in the caller’s
type, but it does not require that the called operation have the exact same effect
collection.

The following effectful program reads a name from standard input, and greets
the user.

hello : { [STDIO] } Eff m ()

hello = do n <- getStr

putStrLn ("Hello, " ++ n)

If this program is rewritten to read the name from a file, the type of hello must
be updated. If it is not, as in the following program, then Idris will report a
proof search error.

getName : { [FILE_IO ()] } Eff m (Maybe String)

getName = do ok <- open "test" Read

case ok of

False => return Nothing

True => do name <- readLine

close

return (Just name)

hello : { [STDIO] } Eff m ()

hello = do n <- getName

putStrLn ("Hello, " ++ n)

The error is:

When elaborating right hand side of hello:

Can’t solve goal

SubList [(FILE_IO ())] [STDIO]

While a great deal of thought has gone into making this error as readable as
possible, the effect system is just a library. The compiler can’t possibly provide
more useful suggestions.

An error handler can rewrite this to something more informative:

%error_handler

effErr : Err -> Maybe (List ErrorReportPart)

effErr (CantSolveGoal ‘(Effects.SubList ~required ~found) ctxt)

= Just [TextPart "Attempted to use an operation with effects"

, TermPart required

, TextPart "in a context where only"

, TermPart found

, TextPart "are available."]

effErr _ = Nothing

With this error handler, the message becomes:

When elaborating right hand side of hello:

Attempted to use an operation with effects [FILE_IO ()] in a context

where only [STDIO] are available.

This message provides the user with a much better hint as to the significance of
the relationship between these lists.

5 Argument Error Handlers

The error reflection mechanism described thus far suffers from a major short-
coming: the risk of “false positives”. For example, it is perfectly reasonable to
expect that a library other than the effects library might use the SubList family
and its associated proof search procedure. However, the error handler described
in Section 4.2 will also be used to rewrite error messages resulting from this
new library, giving blatantly misleading results. The risk of false positives arises
when a single type is used for multiple purposes.

The problem could be solved by copying and pasting the definitions of the
types in question to a separate namespace, and being careful about matching
namespaces in error handlers. However, copying and pasting is not typically
regarded as a good code re-use practice. Even worse, users may receive a very
confusing message if a library developer is not aware that a particular type is
used in more than one location. Developers of error handlers need not be the
original authors of a library.

The chance of false positives can be reduced by narrowing the scope of error
handlers. Thus, Idris supports attaching them to specific formal parameters of
specific functions. A comma-separated list of error handler names hs is attached
to parameter x of the function, constructor, or type constructor f using the
pragma:

%error_handlers f x hs

When an error results from the elaboration of a term that occurs as an argument
to f in the position indicated by x, the error handlers hs will be preferred over
global error handlers.

6 Implementation considerations

While error reflection is implemented in Idris, there are no fundamental consider-
ations that prevent it from being implemented in languages without dependent
types. Nevertheless, a practical implementation requires a certain amount of
compiler infrastructure that may not be available in every programming lan-
guage.

Compile Time Evaluation Executing error handlers requires that the compiler
be able to evaluate expressions while type checking. Thus, an interpreter for the
language being type-checked should be available, and the type checker should
have some facility for using it. This is available by definition in a dependently
typed language, but many other languages will also be able to do this.

Ensuring Termination Running arbitrary code at compile time has the potential
to cause the compiler to not terminate. Because dependently typed languages do
this as a matter of course, they have evolved sophisticated techniques for ensur-
ing that only terminating terms are evaluated at compile time. Some languages,
such as Coq [21] and Agda [20], reject all terms that do not pass the termi-
nation checker. Others, such as Casinghino, Sjöberg, and Weirich’s Zombie [6],
have separate overlapping languages: a terminating language of logical formulae,
which can run in the type checker, and a potentially non-terminating language
for programs that will not occur in types. Idris checks all terms for termina-
tion, but potentially non-terminating terms are simply not reduced by the type
checker. To preserve the termination of the type checking process, error handlers
that do not pass the termination checker are rejected. If other languages adopt
error reflection, they should also implement a termination checker, or handle
non-termination through some other mechanism, such as a timeout or through
QuickCheck-style [8] property-based testing. Additionally, because a termination
checker does not guarantee speedy execution, timeouts and property-based test-
ing may be useful even in the presence of termination checking.

Reflection Facilities In order to support error reflection, the reflection capabil-
ities of a host language should, at a minimum, support reflection of both types
and terms. In dependent types, this is trivial, as there is no syntactic distinction
between types and other terms. In other systems, support for reflecting both
syntactic categories can vary. Some systems, such as Template Haskell, support
both straightforwardly. Some other languages, such as F# [19], have one system
for quoting terms and another for representing types (namely, .NET reflection).
Scala’s quasiquotations [17] support both expressions and types, and could be a
promising facility for implementing error reflection.

Error Origin Tracking In a dependently-typed language in which error handlers
can be attached to specific function arguments, it is not sufficient to install error
handlers as exception handlers in a traversal of the abstract syntax tree. This is
because Idris’s unifier accumulates a collection of unsolved unification problems,

which may become solvable by a mix of later unifications and reductions. At the
end of elaboration, the compiler must check that no open unification problems
remain. Thus, unification errors in particular may first be signaled far from
their source. In Idris, this is addressed by annotating every error with a stack
of surrounding applications, and then using this information to decide which
error handlers are eligible to rewrite the error. As a side benefit, these location
annotations can also provide ordinary error messages that are more informative.

7 Related Work

While the difficulties in interpreting error messages in embedded DSLs is well-
known, there are comparatively few systems that attempt to address it. Here,
we do not describe work on improving type errors in general, as the focus is on
embedded languages.

Heeren, Hage, and Swierstra [9] present a system for constraint-based type
inference in the context of the Helium language that aims at solving the same
problems as Idris error reflection. Their system is defined at a higher level of
abstraction, supporting the definition of custom typing rules that are then me-
chanically checked for consistency with the host language’s type system. Addi-
tionally, their system supports defining “sibling functions” that are suggested as
alternatives in the case of type errors. Finally, their system allows the order of
type inference constraints to be controlled by library authors, making it easier
to locate error messages at the real source of errors, rather than elsewhere in a
library. Some of these techniques would be applicable in a language like Idris. In
particular, sibling functions seem to be quite promising as a potential feature.
However, there is no obvious way to apply these techniques to proof search fail-
ures, and checking that custom typing rules are a consequence of Idris’s typing
rules could require arbitrarily complicated computation due to dependent types.
Additionally, the lack of global type inference in dependently-typed languages
drastically reduces the utility of controlling the order in which constraints are
checked.

8 Conclusion and Future Work

As demonstrated, the error reflection facility enables conversion of uninformative
error messages to informative, domain-specific error messages. Quasiquote pat-
terns enable a convenient syntax for destructuring terms that occur in reflected
errors and reconstructing informative messages that contain terms.

However, there are still practical considerations to be worked out. Perhaps the
most serious is the strong coupling between error handlers and the specific terms
that occur in error messages. Both compiler updates and relatively small changes
in an embedded language can cause fairly large changes in error messages. To
make rewriting reflected errors more robust and flexible, it may be convenient
to be able to use tools other than pattern matching to define error handlers. For

example, it might be possible to develop a sort of query language for reflected
terms that allows convenient and expressive extraction of sub-terms.

It can also be difficult to mentally map the displayed error message to the
constructor that represents it in the error type. This could be solved by inte-
grating error reflection more closely into Idris’s IDE support. For instance, an
interactive command to reflect an error that is displayed on screen might make
it easier to determine the structure to be rewritten.

Acknowledgments This work was performed as part of the Actulus project,
funded by the Danish Advanced Technology Fund (Højteknologifonden) grant
017-2010-3. I would like to thank my advisor, Peter Sestoft, for his comments
and feedback on this paper during its development, and Emil Axelsson and the
anonymous reviewers for their useful suggestions. Additionally, Edwin Brady
was very helpful with the Idris implementation, and John Hughes provided in-
teresting thoughts about testing as a complement to or replacement for totality
checking.

References

[1] Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard,
B., Persson, A., Sheeran, M., Svenningsson, J., Vajdax, A.: Feldspar: A
domain specific language for digital signal processing algorithms. In: Formal
Methods and Models for Codesign. pp. 169–178. MEMOCODE, IEEE (Jul
2010)

[2] Bawden, A.: Quasiquotation in Lisp. In: Partial Evaluation and Semantic-
Based Program Manipulation. pp. 4–12. PEPM ’99 (1999)

[3] Brady, E.: Idris, a general purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programming
23, 552–593 (9 2013)

[4] Brady, E.: Programming and reasoning with algebraic effects and dependent
types. In: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming. pp. 133–144. ICFP ’13, ACM (2013)

[5] Brady, E., Hammond, K.: Resource-safe systems programming with embed-
ded domain specific languages. In: Russo, C., Zhou, N.F. (eds.) Practical
Aspects of Declarative Languages, Lecture Notes in Computer Science, vol.
7149, pp. 242–257. Springer Berlin Heidelberg (2012)

[6] Casinghino, C., Sjöberg, V., Weirich, S.: Combining proofs and programs in
a dependently typed langauge. In: 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’14, San Diego, CA,
USA (2014)

[7] Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanrahan,
P., Odersky, M., Olukotun, K.: Language virtualization for heterogeneous
parallel computing. In: Proceedings of the ACM international conference
on Object oriented programming systems languages and applications. pp.
835–847. OOPSLA ’10, ACM (2010)

[8] Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing
of haskell programs. In: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming. pp. 268–279. ICFP ’00,
ACM (2000)

[9] Heeren, B., Hage, J., Swierstra, S.D.: Scripting the type inference process.
In: Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Programming. pp. 3–13. ICFP ’03, ACM (2003)

[10] Hickey, R.: Clojure (2008–2014), http://www.clojure.org/
[11] Hudak, P.: Building domain-specific embedded languages. ACM Computing

Survey 28(4es) (Dec 1996)
[12] Keller, G., Chakravarty, M.M., Leshchinskiy, R., Peyton Jones, S., Lipp-

meier, B.: Regular, shape-polymorphic, parallel arrays in haskell. In: Pro-
ceedings of the 15th ACM SIGPLAN International Conference on Func-
tional Programming. pp. 261–272. ICFP ’10, ACM (2010)

[13] Mainland, G.: Why it’s nice to be quoted: Quasiquoting for haskell. In: Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell. pp. 73–82. Haskell
’07, ACM (2007)

[14] Oury, N., Swierstra, W.: The power of Pi. In: Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming. p. 39.
ACM (Sep 2008)

[15] Pfenning, F., Elliot, C.: Higher-order abstract syntax. SIGPLAN Notices
23, 199–208 (1988)

[16] de Rauglaudre, D.: Camlp4 reference manual (2003),
http://pauillac.inria.fr/camlp4/manual/

[17] Shabalin, D., Burmako, E., Odersky, M.: Quasiquotes for scala. Tech. Rep.
185242, École polytechnique fédérale de Lausanne (2013)

[18] Sheard, T., Jones, S.P.: Template meta-programming for haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 1–16.
Haskell ’02, ACM (2002)

[19] Syme, D.: Leveraging .NET meta-programming components from F#: inte-
grated queries and interoperable heterogeneous execution. In: Proceedings
of the 2006 workshop on ML. pp. 43–54. ACM (2006)

[20] The Agda Team: The Agda Wiki (2014),
http://wiki.portal.chalmers.se/agda/

[21] The Coq development team: The Coq proof assistant reference manual.
LogiCal Project (2014), http://coq.inria.fr, version 8.4pl4

[22] van der Walt, P., Swierstra, W.: Engineering proof by reflection in Agda. In:
Hinze, R. (ed.) Implementation and Application of Functional Languages.
pp. 157–173. Lecture Notes in Computer Science, Springer Berlin Heidelberg
(2013)

